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§4. Applications of the containment-parthood distinction. The aim of this section is
to scrutinize some of the applications of the containment-parthood distinction. The
fruitfulness of the distinction will provide us with an (a posteriori) justification of it;
moreover, we shall see that in some cases Leibniz needs an infinitary Real Addition
operation.

4.1. Monads are in bodies, but not parts of bodies. 'We have shown that, provided
there are at least two objects, there can be no atom according to the LM calculus. Since
an atom is defined as something with no proper part, their metaphysical counterparts
are monads. In this paragraph. with Ax we shall indicate that x is a monad (or
simple substance). The conclusion is that monads are not parts of any compound:
in particular, monads are not parts of bodies. Indeed, monads are not homogeneous
to bodies, since the former are immaterial and not extended, the latter material and
extended. However, monads “enter into compounds”, i.e., they are (contained) in
bodies. In the Monadology we read:

1. The monad which we are to discuss here is nothing but a simple
substance which enters into compounds. Simple means without parts.
(Theodicy, Sec. 10).

2. There must be simple substances, since there are compounds, for
the compounded is but a collection or an aggregate of simples. (GP
VI 607 - [35, p. 643])

In the Principles of Nature and Grace it is clarified that these compounds are bodies:

Compounds, or bodies [Les composés ou les corps] are pluralities,
and simple substances—lives, souls, and spirits—are unities. (GP VI
598: [35. p. 636])

This latter thought was echoed in the 1690s as follows:

A body is not a substance but an aggregate of substances. (Leibniz
1690: A VI, 4, 1668)

A body is an aggregate or a compound of simple substances. Notice that Leibniz
does not say that a body is a whole whose parts are the monads; indeed, he is very clear
that this is not the case:

Moreover, even if the body of an animal or my own body is composed,
in turn, of innumerble substances, they are not parts of the animal or
of me. (GM III 537—translation from [34, p. 167])

That bodies are aggregates of substances means that substances are (contained)
in bodies. Here Leibniz is simply applying the definition of containment of the RA
calculus: if x is in y, then x plus something else is identical to y, which means that y is
an aggregate (a container) of which x is one of the ingredients.

Remarkably, in order for this distinction to work, real addition must be an infinitary
operation along that of RA°°: each body is constituted by infinitely many substances,
i.e., each is an infinite aggregate of monads. If we admitted only a finitary operation

not requiring that homogeneity preserves open intervals, since set difference among open
intervals does not always yield back open sets).
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(like that of RA), then we could not interpret the relationship between monads and
bodies via the containment relation, and so it would become totally mysterious which
relations are here in play.>*

Working within RA°°, we can be more specific on the relationship among bodies
and monads. The gist of Leibniz’s theory can be summed up in 6 propositions:

1. There are monads, i.e., substances with no proper parts: in formulas, IxA4x;
2. There are bodies, i.e., concrete objects with proper parts: IxBx, where
Bx = Conc(x) A JwPPwx (Conc(x) means the x is concrete, i.e., not ideal
or abstract);
. What exists is either a monad or a body;
4. Each part of a body is a body as well, and so it has its own proper parts:
Vx(Bx — Vy(PPyx — —Ay));

5. There are monads in bodies: Vx(Bx — 3y(4y A Cxy));

6. Bodies are aggregate of monads (only), i.e., bodies results from monads only:
Vx(Bx — Zyx), where ¢ is the condition Ay A Cxy.

W

Propositions 1 and 2 simply state the existence of, respectively, bodies and monads.
Proposition 3 states that if something exists, either it is a monad or a body. Together
with Proposition 6, this entails that what exists is either a monad or an aggregate
of monads. Proposition 4 follows from PP-Non-Well-Foundedness applied to bodies:
since bodies have parts, by PP-Non-Well-Foundedness, these parts have further parts
and so on. So no atom (i.e., no monad) is a part of a body. Proposition 5 states that
monads are contained in bodies. Notice that it does not explicitly say that all that
there is to bodies are monads. This latter claim is in fact Proposition 6, which says that
bodies are aggregates of monads. In other words, bodies are the sum (real addition)
of all and only the monads they contain. So, if b is a body. then b is the sum of all
monads y (4y) contained in it (Cby). By applying UCP (where ¢ is the condition
Ax A Cbx) we obtain: B(b) — Z4b. 6 is the generalization of this. Given Leibniz’s
nominalistic attitude toward aggregates (and sums) this amounts to the idea that the
reality of bodies just is the reality of the monads in them.

At this point one might worry about the mutual consistency of propositions 4 and 6.
The latter claims that bodies are aggregates of monads only: the idea is that we do not
need anything else apart from monads to obtain bodies; when God creates a body he
simply created the correspondent monads. But Proposition 4 says that there are parts
in bodies, and we know that these parts are not monads.

To meet this concern the first thing to notice is that, given the RA° calculus,
Propositions 5 and 6 are equivalent.

Theorem: 5 <> 6

Proof: From right to left. That 6 implies 5 is straightforward: if B(b) is the case for
an arbitrary b, then X4b is the sum of all monads in . In order for the sum to exist, ¢
must be satisfied, i.e., there must be a y such a that Ay and Cby. Therefore, we have
B(b) — 3y(Ay A Cby). Generalizing we obtain 5.

From left to right. The other direction is more complex, and here we adopt (a
slightly modified version of) a proof from [17, p. 146]. First, notice that in virtue of
the definition of X4x proposition 6 amounts to the conjunction of the following two
propositions:

>+ For the relationship between monads and bodies see the illuminating pages of [4].
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6A) Vx(Bx — (Vz(4z A Cxz) = Cxz)),

6B) Vx(Bx — Vy(Vz(4z A Cxz) = Cyz) — Cyx).

Since 6A is a logical truth, it is enough to show that 5 implies 6B. To do that we shall
use our Subtraction 2 axiom, according to which, given any x and y, x — y is always
defined as the only object z such that Cxz and Dzy (when Cyx or x = y, the result is
Nihil). The proof goes as follows.

Suppose that B(a). Moreover, suppose that =C (b, a). By Subtraction 2, there is
a z such that Vw (C(z,w) <> (C(a,w) A D(w,b))). Thus z = a — b. In particular, we
have that there is a w such that C(a,w) A D(w, b). By Proposition 3, w is a monad
or a body. If it is a body, by Proposition 3, it contains a monad d (and so Ad). If it is
a monad, then Aw. In this case we can put w = d. In each case, we have that there is
a d such that Ad and C(w. d). By transitivity of containment, we obtain C(a.d). We
thus have Ad A C(a.d).

From D(w.b) and C(w.d), we get ~C (b, d). Therefore, we have Ad A C(a,d) A
—C(b.d). By existential generalization, we obtain 3z(A4z A C(a,z) A~C(b.z)).
Since this depends on having assumed —C(b,a), we can introduce the implica-
tion: ~C(b,a) — 3z(Az A C(a.z) AN—=C(b.z)). Contraposing and by propositional
equivalences, this amounts to Vz(A4z A C(a,z) — C(b,z)) — C(b, a). By introducing
the implication and generalization, we obtain Vx(Bx — Vy(Vz(4z A C(x.z) —
C(y,z)) = C(y.x))). ie., 6B. O

The equivalence of Propositions 5 and 6 means that we just need to assume that there
are monads in bodies to derive that bodies are nothing else than (non-mereological)
aggregates of monads. We are now in a position to see why Propositions 4 and 6 are
consistent. The following model clearly validates Propositions 4 and 5, but since 5 is
equivalent to 6, it validates 6 as well.

In the picture, the lines represent the containment relation. So, m1 is contained in
B1, m2 is contained in B2, and B2 is contained in B1, etc. m1, m2, etc. represent
monads, while B1, B2, etc. represent bodies. The lines connecting the B-terms with the
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m-terms indicate that the containment relation holds among non-homogeneous things,
while the lines connecting the B-terms with other B-terms are for containment between
homogeneous things, i.e.. parthood. Proposition 4 holds, because all (proper) parts of
a body (B1, B2, etc.) are not atoms, namely they have further (proper) parts. At the
same time Proposition 5 holds, since each body has at least one monad contained in it.
But then also Proposition 6 holds, and indeed every object in the model is ultimately
decomposable into monads. In particular, the sum of all monads is identical to B1.%

It can be easily seen that the present model is not a model of LM or RA4A*°. For
example, there is no sum of m1 and m2, which implies that there is no remainder
of B1 — B3. And this may be seen as problematic, since the existence of remainders
is guaranteed by Subtraction 2, which we have used in the proof of the equivalence
of 5 and 6. But a closer look at the proof will reveal that we have not used all the
strength of Subtraction 2. In fact the proof only relies on a weaker principle, i.e.,
-C(y.x) — (3zC(x.z) A D(z.y)). And this principle is valid in the model above. The
point of the model is to show that the two claims at the heart of Leibniz’s theory of
substances (bodies are aggregates of substances and at the same time they are divisible
without end into further composite bodies) are consistent with each other. The model
can thus be seen as an oversimplified picture of the structure of a Leibnizian corporeal
substance. Clearly the distinction containment-parthood is essential to it.

4.2. Multiplicity in the simple. In the Monadology, Leibniz famously claimed that
there is a multiplicity (of states) in each simple substance:

12. But besides the principle of change there must be a particular
detail of what changes, which constitutes the specific nature and the
variety, so to speak, of simple substances.

13. This detail must enfold a multitude in the unity or the simple.
For every natural change takes place by degrees—something changes
and something remains—and as a result there must be a plurality of
affections and of relations in the simple substance, even though it has
no parts. (translation from [35, p. 644], slightly modified).

Leibniz here introduces a multiplicity of different states within each monad;
multiplicity which is required for the explanation of change. This is Leibniz’s
reinterpretation of the traditional claim that substances have a plurality of accidents.
But how is it possible that what is simple. i.e., what has no parts, hosts a multiplicity in
itself? Clearly, these states cannot be parts of the substance, otherwise we would have
a contradiction with the attribute of simplicity. Here, again, the distinction between
containment and parthood solves the problem. States are (contained) in the substance,
but are not part of it. Substances are simple with regard to the parthood relation: on
the contrary, with regard to the containment relation, the substance is something
complex, exactly in the sense that there is a multiplicity of states in it. Each state is in
the substance, which means that in the substance there is an aggregate of states.

> An easy way to see that this is the case is to consider an example from [21, p. 75] (who first
introduced this model). Interpret the lines as representing the subset relation; then take B1
to be the set of positive integers {1,2,3,...}; B2 the set {2,3.4,...}; B3 the set {3.4.5....} etc.
Moreover take m1 to be {1}; m2 {2}, etc. Then it is clear that the set B1 is the union of all
elements m1, m2, etc.
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It goes without saying that this multiplicity of states is infinite. Here again we find an
example of an (implicit) use of an infinitary Real Addition operation. But there is more:
each state represents the entire world, which—as we are going to see—is an infinite
aggregate of substances. Therefore, not only is there an infinite aggregate of states in
each substance, but each one of these states is an infinite aggregate of representations
(of everything that exists). Again, with only a finitary Real Addition, we could not
apply the containment relation, and the relation in play here would be mysterious.
These applications both require the R4 calculus.

4.3. The world. The last application of the containment-parthood distinction that
I want to scrutinize is Leibniz’s conception of the created world. Here again we find
what appear to be incompatible statements about it. On the one hand, Leibniz is clear
that the world constitutes an actual infinite:

Created things are actually infinite. For any body whatever is actually
divided into several parts, since any body whatever is acted upon by
other bodies. And any part whatever of a body is a body by the very
definition of body. So bodies are actually infinite, i.e., more bodies
can be found than there are unities in any given number. (A VI 4,
1393/ [25, p. 235])

There is an infinity of creatures in the smallest particle of matter,
because of the actual division of the continuum to infinity. (GP VI
232/ [33,8§195])

Since there is an actual infinity of bodies within each body, the world, i.e., the
aggregate of every created thing, is an actual infinite as well. The world is sometimes
described as the aggregate of all bodies (“The aggregate of all bodies is called the
world”—A VI 4, 1509), other times it is described as the aggregate of all (created)
substances (since what really exists are substances). In both cases, the infinite in play is
actual, showing once again that Leibniz was using an infinitary real addition operation
(indeed, from the claim that the world is the aggregate of all bodies or all substances, by
the definition of inesse we can infer that each body and each substance is (contained)
in the world).

However, there are other passages that suggest what may appear as a rather different
view:

Thus, we may indeed call all bodies together “the world”, but in
reality the world is not some one thing, but this alone can be said: for
any given body, there is some larger one in the world and we never
reach a finite body that includes all [bodies]. Nor, however, is there
such an infinite body. (A VI 4, 1469 - about 1683-85).

Yet M. Descartes and his followers, in making the world out to
be indefinite so that we cannot conceive of any end to it, have said
that matter has no limits. They have some reason for replacing the
term ‘infinite’ by ‘indefinite’, for there is never an infinite whole in
the world, though there are always wholes greater than others ad
infinitum. As 1 have shown elsewhere, the universe itself cannot be
considered to be a whole. (A VI, 6, 151/ translation from [36. pp.
150-151].)
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One may be tempted to interpret these claims as suggesting the view that the world
constitutes a potential infinite (given finitely many bodies, always more can be
founded). But this would immediately give us a contradiction with the claim that
the world is an actually infinite aggregate. Something cannot be at the same time and
under the same respect potential and actual.

Again, the contradiction can be solved by appealing to the distinction between
containment and parthood. When we look at the world with the “glasses” of the
containment relation, the world is an infinite aggregate, but it is not an infinite whole
(“infinity itself is nothing, i.e., that it is not one and not a whole”—A VI 3, 168/[25.
p. 9]). Recall the nominalistic reading of aggregates: to say that the world is an infinite
aggregate of substances/bodies simply means that there are actually infinitely many
substances/bodies. However, when we look at it with the “glasses” of the parthood
relation, what we see are finite wholes (here finite means that they have a finite
magnitude), and given a whole a more comprehensive whole can always be found.
Notice that the actual infinity of the universe is what guarantees that “there are always
wholes greater than other ad infinitum”. The idea is that FCP allows us to add together
more and more things into bigger and bigger wholes. Suppose that A and B are two
different things, possibly overlapping, but such that one is not contained in the other.
Let us compose them via FCP into a whole C. Then A and B will both be proper parts
of C: in virtue of the definition of the <-relation, since each of them are proper parts
of C, they both are smaller than C. If we now compose C with a further thing D, we
will obtain a bigger whole E. It seems that in this way, by applying FCP repeatedly,
we can get bigger and bigger wholes. This only holds if one of the two things that we
sum is not contained in the other. But what guarantees that, for any thing a, we can
find a b, not contained in ¢? It is the fact that the universe is infinite that guarantees
that the application of FCP can always result in bigger and bigger wholes. Because if
we have infinitely many disjoint things at disposal, then given a certain thing a, there
is always a distinct thing b (not contained in @) such that their composition results in
a whole bigger than each of them. The picture is thus as follows: the universe is an
actual infinity of substances. but not a whole.’® There are only finite wholes. and given
an arbitrary whole, there is always a bigger whole that can be obtained via FCP. This
implies that Leibniz’s mereology is not only gunky, but junky as well, meaning that
each whole is a proper part of another whole.

§5. Conclusion. In this paper we presented a logical reconstruction of both Leib-
niz’s Real Addition and his mereological calculus. Compared to other reconstructions
of the former (such as [39, 52]), we interpreted the Real Addition calculus not as
pertaining to logic conceived as a theory of (valid) inferences, but as a “mereological”
theory (here I am using the adjective ‘mereological’ as referring to contemporary
mereology). In doing this we followed the suggestion of [44].

A consequence of this interpretation is that the Real Addition calculus—RA
(or RA®>)—corresponds to what we nowadays call mereology. When we think of
mereology as a general calculus of individuals that can be applied to any object
whatsoever, then, in Leibniz’s own terms, we are dealing with the Real Addition

36 On the metaphysical consequences of the claim that the world is not a whole see [15].
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